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Abstract
This paper introduces a novel approach
for biomedical Named Entity Recognition
(BioNER) that leverages OpenAI’s GPT-3.5
for efficient dataset annotation. Faced with
the challenge of rapidly expanding biomedical
literature, traditional expert human-annotated
methods of labeling BioNER datasets are too
slow and costly. Our method employs GPT-
3.5’s zero-shot, one-shot, and few-shot learn-
ing capabilities to generate datasets that mirror
the quality of expert human annotation. We
validated our approach intrinsically by com-
paring it against human-labeled datasets and
extrinsically by evaluating the performance of
two state-of-the-art Biomedical Pretrained Lan-
guage Models (BioLinkBERT and BioGPT)
after fine-tuning on our GPT-labeled datasets.
Our approach achieves a promising level of ac-
curacy, comparable to human-annotated data,
and shows that BPLMs fine-tuned with our
datasets perform well. This study highlights
the potential of large language models to rev-
olutionize BioNER dataset annotation, which
will result in significant advancements in the
field of biomedical natural language process-
ing.

1 Introduction

Named entity recognition of biomedical entities
(BioNER) in text is essential for facilitating biol-
ogy research as it assists researchers in quickly
finding relevant information from biomedical texts,
which are typically unstructured. It’s also essential
for performing downstream NLP tasks such as in-
formation extraction, summarization, and question
answering (QA) in the medical domain. Models
that perform NLP tasks are essential for keeping
up with the biomedical field as it rapidly expands:
over 1 million biomedical papers are added to the
PubMed database yearly (about two papers per
minute) (Huang et al., 2020; Landhuis, 2016).

Current state-of-the-art (SOTA) results in
BioNER are achieved using transformer-based

biomedical pretrained language models (BPLMs)
that can be fine-tuned to perform many NLP tasks,
including NER (Kalyan et al., 2022). However,
these models rely on extremely large datasets to
properly learn the NER task, and creating these
NER datasets is specifically challenging due to
the precise nature and evolving dynamics of the
biomedical field.

Currently, gold-standard BioNER datasets are
created via a slow, expensive processes that rely
on human experts for manual data annotation,
which are difficult to scale. Such expert-annotated
datasets struggle to match the variability in biomed-
ical terminology, the complexity of biomedical con-
cepts, and the pace of growth in biomedical litera-
ture (Dai et al., 2020). Consequently, the quantity
and quality of existing BioNER datasets limit the
performance of SOTA BioNER models.

To overcome the limitations imposed by the
sparse and specialized nature of BioNER datasets,
researchers employed deep-learning techniques to
train models for the BioNER task but none of these
techniques are as effective as simply training mod-
els on more data.

For example, multi-task learning addresses lim-
ited training data and allows models to learn several
related tasks simultaneously by finding similari-
ties in different small datasets. However, models
trained with multi-task learning have low precision
scores and inconsistent performance across diverse
datasets (Khan et al., 2020; Wang et al., 2019).

Other approaches, such as intermediate fine-
tuning (where a pre-trained model’s parameters are
adjusted by training it on new data related to a spe-
cific task) have similar drawbacks of the model not
generalizing to perform well on different datasets
(Kalyan et al., 2022).

An approach to quickly and efficiently label
large, high-quality datasets for BioNER would
greatly benefit the field by removing the limita-
tions of sparse data altogether. This paper is a



preliminary exploration of how well large language
models (LLMs) might be up to the task.

GPT-3.5 and similar LLMs have shown remark-
able results for their few-shot and zero-shot capabil-
ities on many NLP tasks, including data annotation
and label error handling (Chong et al., 2022; Chen
et al., 2023; Chung et al., 2022). Recent attempts
to use LLMs for automatic data label generation
have shown promising results (Brown et al., 2020).
However, this approach has never been applied to
the biomedical or NER context as far as we know.

This paper addresses key limitations of expen-
sive, slowly-produced human-annotated datasets
by introducing a novel approach that uses Ope-
nAI’s GPT-3.5 to cheaply and automatically an-
notate BioNER training datasets. We use zero-
shot, one-shot, and few-shot learning with GPT-3.5
models to recreate SOTA BioNER datasets. We
validate our results both intrinsically and extrinsi-
cally. Intrinsically, we compare our datasets with
the original, expert human-labeled dataset. Extrin-
sically we compare the performance of two SOTA
BPLMs (BioLinkBERT and BioGPT), finetuned
on our datasets versus the expert-labeled dataset.

We were able to achieve promising results de-
spite major limitations in time and finances. Intrin-
sically, many of our datasets’ labels are comparable
to human labels. Extrinsically, our results suggest
that the BioNER performance of BPLMs fine-tuned
on LLM-labeled datasets may also be compara-
ble with the performance of BPLMs fine-tuned on
human-annotated datasets. With further research,
it’s possible that GPT-3.5-generated datasets will
offer an automated solution for labeling biomedi-
cal entities (diseases, chemicals, genes, proteins)
in texts, mitigating the bottleneck of human an-
notations amid the rapidly expanding volume of
biomedical literature.

2 Related Work

There is significant existing work toward improving
datasets for BioNER, but none to our knowledge on
label automation. Previous synthetic data labeling
methods were not robust enough to motivate their
use in complex biomedical domains. However,
recent work outside of the biomedical field yields
promising results for automatic labeling.

2.1 State of the Art BioNER

Current SOTA approaches to the BioNER task
feature a two-stage pre-training and fine-tuning

paradigm. Pre-training takes advantage of large
swathes of unlabeled biomedical corpora (during
pre-training) to achieve stronger performance on
biomedical NLP tasks after fine-tuning.

There are two general approaches to pre-
training.

1. Mixed-Domain Pre-Training: SOTA mod-
els like BioBERT (Lee et al., 2019), Clinical-
BERT (Alsentzer et al., 2019), and BlueBERT
(Peng et al., 2019) are initialized with weights
from a general LLM trained on non-specific
text (e.g. BERT), and they then undergo self-
supervised learning on unlabeled biomedical
text. However, initial exposure to general text
causes model tokens to be unrepresentative
of the target biomedical domain (e.g. com-
mon medical terms like "naxalone" might be
split into several tokens by BPLMs initially
exposed to general text).(Gu et al., 2021a).

2. Domain-Specific Pretraining from Scratch:
More recently, SOTA models like PubMed-
BERT are pre-trained without any exposure
to general text and only using biomedical text
(Gu et al., 2020). This has been shown to
overcome vocabulary limitations in the Mixed-
Domain approach (Gu et al., 2021a).

Fine-tuning involves training the BPLM on a
smaller, task-specific dataset to help the model
learn valuable features that can be generalized to
complete tasks like BioNER (Wang et al., 2023).

Figure 1: Current Approach to SOTA BioNER

Biomedical NLP benchmarks evaluate BPLMs’
performance on a variety of NLP tasks (including
BioNER) after fine-tuning on specialized datasets.
The current most comprehensive biomedical NLP



benchmark is BLURB (Biomedical Language Un-
derstanding and Reasoning Benchmark) which we
used to source our gold-standard human-labeled
datasets.

BioLinkBERT currently achieves the most com-
petitive BioNER scores on BLURB. It achieves
its high performance by leveraging a unique pre-
training process that takes advantage of links be-
tween documents (e.g. hyperlinks) (Yasunaga et al.,
2022). BioGPT (Luo et al., 2022) is a recent BPLM
with promising performance in many biomedical
NLP tasks that has not yet been evaluated on
BLURB.

Our experiments automate the labeling of
BioNER-specific datasets found in BLURB,
and we validate our results by fine-tuning a
mixed-domain (BioGPT) and a domain-specific
(BioLinkBERT-Base) BPLM on them. We selected
BioLinkBERT-Base because it’s the highest per-
forming smaller model on the BLURB leaderboard
(which aligned with our constraints), and we se-
lected BioGPT because its lower BioNER perfor-
mance and unique architecture provided greater
diversity in our extrinsic validation.

2.2 Toward Improving BioNER Datasets

Low-quality datasets, such as those that have biased
class distributions and name regularities, negatively
impact BioNER models’ performance on biomedi-
cal NLP benchmarks. Many approaches have been
designed to resolve this, all of which are applied to
previously-labeled data. This is because it is cur-
rently much easier to try to curate existing datasets
than to add to them or produce entirely new ones.

One statistics-based debiasing method involves
temperature scaling to smooth biased model proba-
bilities. Testing their debiased BioBERT model on
datasets with rare diseases revealed a 20% improve-
ment in generalization to rare patterns. However,
this debiasing also led to the model making un-
usual predictions, such as identifying text spans,
adjectives, and parentheses as entities, because it
no longer overtrusted class distributions and sur-
face forms of mentions in the training dataset (Kim
and Kang, 2022).

Another way to improve the quality of labeled
datasets is data augmentation through back trans-
lation, which involves translating from a language
to a pivot language and then translating back to the
original language. Despite this counter-intuitive
approach to producing different data, (Wang et al.,

2020) observed that back translation increased lin-
guistic diversity and expanded the training dataset
such that models trained on small datasets are more
robust and less prone to overfitting for Semantic
Textual Similarity (STS) task.

Dataset debiasing often both has adverse affects
and involves undesirable methods to "produce" new
data. Such complicated approaches could be sim-
plified or done away with if it were cheaper and
easier to produce new labeled biomedical data. Our
pipeline for labeling automation could be used as
a supplement or replacement for many existing ap-
proaches to improving BioNER datasets.

2.3 Toward Automating Data Labeling

Large language models such as GPT-3.5 have re-
markable few-shot learning capabilities, which
have been employed toward data labeling for down-
stream NLP tasks (Brown et al., 2020). Tradition-
ally, experts manage crowd-sourced annotation by
defining tasks and giving examples. Recent stud-
ies have shown that prompting LLMs can produce
annotations similarly.

He et al. introduced AnnoLLM which uses
GPT-3.5 and a few-shot chain-of-thought (CoT)
prompting method to create annotations, achiev-
ing accuracy comparable to crowd-sourcing in user
query and keyword relevance, word sense disam-
biguation, and question-answering (He et al., 2023).
Wang et al. instead used GPT-3 to both label data
and assign its labels an uncertainty score (followed
by human review and re-labeling of those above
an uncertainty threshold) (Wang et al., 2021). This
method also yielded results on par with traditional
datasets.

Our research stands out as it is the first, to our
knowledge, to investigate LLMs in annotating NER
and biology-specific data. We leveraged these ap-
proaches and expand off He et al. and Wang et al.
to create a pipeline for annotating BioNER data
using various prompting techniques with LLMs.

3 Methods

To analyze LLMs’ BioNER dataset labeling abil-
ities, we implemented an automated label gener-
ation pipeline. We passed in untagged biomed-
ical text, along with various prompts, to a GPT-
3.5 model to generate an NER tagging of the text.
We generated datasets using a zero-shot, one-shot,
and few-shot prompting for five BioNER datasets
in the BLURB benchmark. After generating our



datasets, we performed both an intrinsic evaluation
and extrinsic evaluation. In the intrinsic evaluation,
we compared the GPT-labeled dataset to the origi-
nal human-labeled dataset. In the extrinsic evalua-
tion, we compared the performance of two different
BPLMs’ fine-tunined on the human-labeled test set
and the the GPT-labeled datasets, respectively. All
of the code for label generation and evaluation is
found this GitHub repo.

Figure 2: Automated Label Generation Pipeline

3.1 Datasets for BioNER Label Generation
We’ve selected the BioNER datasets used in the cur-
rent most comprehensive biomedical NLP bench-
mark, BLURB (Gu et al., 2021b). These, outlined
in Table 9, include NCBI Disease (Doğan et al.,
2014), the BioCreative V CDR task corpus (Li
et al., 2016), JNLPBA (Huang et al., 2019), and
the BioCreative II gene mention recognition corpus
(Smith et al., 2008).

Each corpus focuses on a specific type of
biomedical entity and is labeled by human experts
using the standard "BIO" labeling schema: every
token is labeled "B" if it is the beginning of a rele-
vant biomedical entity, "I" if it is in the middle of
a multi-token biomedical entity, or "O" if it is not
part of a relevant biomedical entity.

Figure 3: "BIO" labeling schema example. Green = "O",
Orange = "B", Purple = "I"

Each of the five corpuses label only certain types
of biomedical entities which are shown in Table 9.
Together, they cover a comprehensive range of
biomedical entity types, providing a comprehen-
sive basis for testing our pipeline. For each original
corpus, we used the unlabeled text in the "devel"

split to apply our automatic labeling pipeline, and
we used the labeled test splits in the "test" split for
our extrinsic evaluation.

Dataset Entity Devel Test
BC5DR-chem chemical 122.0k 129.5k
BC5DR-disease disease 122.0k 129.5k
NCBI-disease disease 24.9k 25.4k
BC2GM genes 73.6k 148.5k
JNLPBA protein 121.1k 118.6k

Table 1: Name, featured biomedical entity type, and
number of tokens in the original devel and test sets of
NER Datasets used in the BLURB Biomedical NLP
Benchmark. BLURB is the current most comprehensive
biomedical NLP benchmark.

3.2 Prompt Engineering for BioNER Label
Generation

Our prompting strategy with GPT-3.5 involved de-
tailed instructions for NER and required output
formatting. We set the model’s temperature to
0 for output consistency and experimented with
zero-shot, one-shot, and few-shot learning prompts.
These prompts varied in the number of training
examples provided, ranging from zero to three, tai-
lored to optimize performance without excessive
computational cost.

Providing more context on how to effectively
label tokens improved the model’s annotation ca-
pabilities. Therefore, our prompts included precise
directions on what entity type to label, according
to the BIO labeling schema (Hong et al., 2020),
and that the output must be formatted in JSON
(such that each key and value pair corresponds to
a unique token and corresponding label from the
inputted text). To resolve identical tokens, we spec-
ified each output token = the original token + "_" +
its index in the text. For more details on what fac-
tors we took into consideration during the prompt
engineering process, refer to subsection A.3.

Each training example for one- and few- shot
prompts featured sample texts with approximately
300 tokens and labels taken from the training set
of the corresponding dataset in the required output
format.

For one-shot prompts, we empirically picked
training examples with a relatively high ratio of
labeled entities. This metric was chosen intuitively
because our financial constraints limited our ability
to experiment.

https://github.com/jennyxycai/llm-annotations


For few-shot learning, we chose three example
sentences using three metrics: 1) a sentence with
a high number of entities, 2) a sentence with rela-
tively long entities, and 3) a sentence with a rela-
tively low number of entities that better represents
the entire dataset’s entity ratio. This method aimed
to improve GPT’s accuracy in recognizing and la-
beling specific entity types without mislabeling
unrelated tokens.

We concluded our prompt by appending a line in-
dicating the text we want the LLM to label. Exam-
ples of prompts used in zero-shot, one-shot and few-
shot prompting can be viewed in subsection A.2.

3.3 Generating BioNER Labels with GPT-3.5

Utilizing OpenAI’s GPT-3.5 API, we segmented
human-annotated datasets into sentences, using
period tokens as delimiters. We grouped these
sentences into approximately 300 token chunks–
optimizing the number of tokens per API request
while avoiding RateLimitErrors.

While sending in our prompts, the API typi-
cally responded within 10 seconds, though some
requests took up to 10 minutes. To enhance effi-
ciency, we made the calls multi-threaded, sending
10 parallel requests. We encountered occasional
timeout errors, leading to temporary closed connec-
tions. To mitigate data loss and redundant requests,
we recorded each response in a CSV file in real-
time. We found that API performance was highly
variable on both the time of day and the OpenAI
account. Fully labeling larger datasets ( 100,000
tokens) sometimes took 30 minutes and other time
tooks about 8 hours.

A detailed depiction of the entire automatic la-
beling pipeline can be viewed in subsection A.1.

4 Evaluating Label Accuracy and Quality

To evaluate the abilities of GPT-3.5 as an annotator
of BioNER datasets, we analyzed the quality of the
generated dataset labels from each experiment both
intrinsically and extrinsically.

4.1 Intrinsic Evaluation

Intrinsic evaluation consisted of comparing the
LLM-generated labels to the human expert labels
for each of the datasets and deriving classification
metrics. This sought to answer both how effectively
our prompt generated valid outputds from GPT-3.5
and how differently GPT-3.5 performs compared
to human experts at labeling.

Figure 4: Intrinsic Evaluation of GPT-generated labels

4.1.1 Output Validity

We first measured and corrected syntactical mis-
takes made by GPT-3.5 in the labeling process.
GPT-3.5 occasionally forgot to list some tokens in
its JSON output. It also hallucinated tokens, mean-
ing it returned token and label pairings that were
not present in the inputted text. As a result, when
we concatenated all of the labeled chunks, the to-
kens in our LLM-generated dataset were slightly
different from the tokens in the original human
annotated dataset.

In order to compute classification metrics de-
termining how similar the two datasets were, we
needed the tokens in both datasets to match exactly.

Therefore, we determined the indices of all of
the missed tokens (tokens that GPT-3.5 did not la-
bel) in the original dataset, and all indices of the
hallucinated tokens (tokens that GPT-3.5 labeled
that did not exist) in the GPT-3.5 generated dataset
via a brute force approach. We counted then re-
moved the missing token and label pairings from
the original human-labeled dataset and removed
the hallucinated token and label pairings from the
GPT-3.5 generated dataset.

Once the tokens in the augmented datasets lined
up exactly, we performed the rest of our analysis
to determine how similar GPT-3.5 labeled entities
were to human-labeled entities.

4.1.2 Entity Recognition

We measured GPT-3.5’s ability to both exactly
and approximately match human-labeled entities.
Given the human annotations had labeling incon-
sistencies and entities in the biomedical domain
are referred to by numerous names, approximate
classification metrics give deeper insight into how
well GPT-3.5 identified biomedical entities.

We used the seqeval.metrics library in Python
to determine the Precision, Recall and F1-score
of LLM-generated labels with human labels as
ground-truth. Exact entity matches required
straight-forward use of seqeval.metrics.



To evaluate approximate entity matches, we first
developed a definition: any GPT-labeled entity that
shares a token with a human-labeled entity is an ap-
proximate match. Intuitively, if the human labeled
dataset identified ’Ebola virus disease’ as an entity
and GPT-3.5 only identified ’Ebola’ as the entity,
then that would be an approximate entity match.

We created an augmented dataset where all ap-
proximate entity matches were now exact matches
then applied the same method we used to get exact
entity classification metrics.

4.2 Extrinsic Evaluation

Our extrinsic evaluation determined how GPT-3.5
generated labeled datasets impacted BPLMs per-
formance on BioNER (relative to human-labeled
datasets). We tested how the performance of cur-
rent SOTA BPLMs BioLinkBERT (Yasunaga et al.,
2022) and BioGPT (Luo et al., 2022) fine-tuned on
GPT-3.5 labeled datasets compared to BPLMs fine-
tuned on human-labeled dataset when evaluated on
human-labeled BioNER test sets.

We implemented fine-tuning using the transform-
ers library from Hugging Face, where both Bi-
oLinkBERT and BioGPT were easily accessible.
We used cross-entropy loss and an Adam optimizer
initialized with the default learning rate. This was
run on the T4 GPU accessible via Google Colab.

We separately performed this procedure for ev-
ery human-labeled and GPT-3.5 zero, one, and
few-shot labeled dataset. We then evaluated Bi-
oLinkBERT and BioGPT’s performances after fine-
tuning on the GPT-labeled against their perfor-
mances when fine-tuned on the human-labeled test
sets. The repository of our fine-tuned BioNER
models can be found on Hugging Face: https:
//huggingface.co/68611-llm-annot
ation-group.

Figure 5: Extrinsic Evaluation of GPT-generated labels

5 Results

Our research reveals that LLM-labeled data, while
it does not outperform human-labeled data, shows
promising results in both intrinsic and extrinsic
evaluations. These findings are significant in
spite of our constrained resources and short time-
line, suggesting that LLMs have great potential to
rapidly create high-quality BioNER datasets.

5.1 Intrinsic Results
5.1.1 Output Validity
We measured two types of output validity: miss-
ing tokens (human-labeled tokens not featured in
the LLM’s output) and hallucinated tokens (tokens
featured in the LLM’s output that weren’t in the
original prompt).

% of True Tokens Missing from the GPT-labeled
datasets

Dataset Zero-Shot One-Shot Few-Shot
BC5DR-C 0.63 0.63 0.47
BC5DR-D 0.61 0.51 0.65

NCBI 0.38 0.24 0.27
BC2GM 0.62 0.17 0.48
JNLPBA 0.55 0.36 0.56
Average 0.56 0.38 0.49

Table 2: Percent of missed tokens in GPT’s zero, one,
and few-shot outputs. Prompts with the fewest missed
tokens are bolded for each dataset.

Our findings indicate that, across all datasets,
the proportion of missing tokens was less than 1%,
with one-shot prompts yielding the lowest rates.
This suggests a high level of accuracy in capturing
relevant data.

Conversely, hallucinated tokens, although all un-
der 1%, increased with prompt complexity, indicat-
ing a trade-off between prompt detail and output
purity.

5.1.2 Entity Recognition
We measured GPT-3.5’s F1, precision, and recall on
exactly labeled human-entities. We also measured
its F1, precision, and recall on the more lenient "ap-
proximately" labeled human-entities as described
in subsubsection 4.1.1.

Our study demonstrates a distinct variance in the
LLM’s ability to recognize different entity types.
GPT-3.5 demonstrated high competency in identi-
fying chemical entities, although it struggled with
disease names.

https://huggingface.co/68611-llm-annotation-group
https://huggingface.co/68611-llm-annotation-group
https://huggingface.co/68611-llm-annotation-group


% of Outputted Tokens Hallucinated in the
GPT-labeled datasets

Dataset Zero-Shot One-Shot Few-Shot
BC5DR-C 0.21 0.39 0.31
BC5DR-D 0.14 0.32 0.35

NCBI 0.02 0.07 0.07
BC2GM 0.25 0.17 0.34
JNLPBA 0.16 0.11 0.15
Average 0.16 0.21 0.24

Table 3: Percent of hallucinated tokens in GPT’s zero,
one, and few-shot outputs. Prompts with the fewest
hallucinated tokens are bolded for each dataset.

Across all datasets and prompting techniques,
our LLM-labeled data had significantly higher re-
call than precision. This mismatched ratio might
be improved by introducing a pseudo-confidence
threshold into our prompts. This might be as
straightforward as adding to the prompt that "false
positive labels are slightly worse than false nega-
tives".

Higher precision scores were earned by few- and
one-shot prompts across the board, indicating that
including training examples in the prompt helps
GPT-3.5 avoid false positives.

Exact Entity F1(Recall, Precision) Against
Human-Labeled Entity Ground Truth:

Dataset Zero-Shot One-Shot Few-Shot
BC5DR-C 60 (73,52) 62 (81,50) 54 (64,47)
BC5DR-D 38 (53,29) 39 (51,32) 18 (18,17)

NCBI 30 (46,22) 35 (59,25) 33 (42,27)
BC2GM 42 (48,38) 42 (47,39) 45 (47,44)
JNLPBA 40 (48,34) 44 (50,40) 41 (38,45)

Table 4: Similarity of entities (measured exactly) la-
beled by GPT-3.5 to human-labeled entities for each
prompt and dataset.

Higher exact entity recall scores were earned by
one-shot prompts. We hypothesize the choice of
examples in few-shot prompts might have inadver-
tently led to overfitting, impacting the performance.
This suggests the need for more strategic selection
of training examples in future research.

Approximate Entity F1(Recall, Precision) Against
Human-Labeled Entity Ground Truth:

Dataset Zero-Shot One-Shot Few-Shot
BC5DR-C 72 (90,60) 70 (94,56) 64 (78,54)
BC5DR-D 52 (76,40) 52 (70,41) 27 (29,26)

NCBI 49 (76,37) 52 (89,37) 50 (65,41)
BC2GM 67 (77,59) 67 (76,60) 69 (74,65)
JNLPBA 65 (77,57) 65 (74,59) 61 (57,66)

Table 5: Similarity of entities (measured approximately
s.t. any human-labeld entity with any correctly identi-
fied token is "correct") labeled by GPT-3.5 to human-
labeled entities for each prompt and dataset.

Surprisingly, zero-shot prompts were slightly
better than one-shot prompts for approximate enti-
ties. From this, we infer that training examples in
the prompt help GPT-3.5 more precisely label full
entities, but they also make GPT-3.5 significantly
less likely to identify entities at all. Since our train-
ing examples were chosen empirically, we suspect
this trend might be caused by sub-optimal example
selection.

5.2 Extrinsic Results
The extrinsic evaluation, using SOTA BPLMs, fur-
ther corroborates our intrinsic findings. While the
LLM-labeled datasets did not surpass the perfor-
mance of human-labeled data, they showed reason-
able quality. Our results showed particular promise
in recall metrics.

BioLinkBERT-Base F1(Recall, Precision) scores after
fine-tuning on:

Dataset Human Zero-Shot One-Shot Few-Shot
BC5DR-C 95 (97,93) 83 (96,73) 81 (97,79) 75 (91,63)
BC5DR-D 81 (90,74) 35 (67,24) 53 (63,46) 52 (70,42)

NCBI 81 (80,81) 36 (73,24) 40 (83,26) 42 (56,33)
BC2GM 85 (89,81) 65 (91,50) 68 (79,60) 71 (82,63)
JNLPBA 81 (87,75) 60 (87,46) 62 (78,52) 62 (64,59)

Table 6: Performance of BioLinkBERT-Base fine-tuned
separately on each dataset. Overall high F1 is bolded
(precision and recall are underlined), and highest non-
control score is bolded (underlined for precision and
recall) if distinct. Values are 100x F1 (Recall, Preci-
sion).

The gap between human and LLM-labeled data
was narrower using the BioGPT model, so the util-
ity of LLM-generated labels appears to be model-
dependent. The gap may also have been smaller
because BioGPT performed worse overall on the
human-labeled datasets.

Performance also varied based on the entity type,



with chemical entities generally yielding closer re-
sults to human-labeled data. This contributes to the
intrinsic evidence that GPT-3.5’s ability to label
BioNER data is affected by the entity of interest.

Interestingly, few-shot prompts, despite their
mixed intrinsic performance, showed notable suc-
cess in extrinsic evaluations. This indicates the
value of increased prompt context, even without
perfectly chosen examples.

BioGPT F1(Recall, Precision) scores after fine-tuning on:

Dataset Human Zero-Shot One-Shot Few-Shot
BC5DR-C 90 (90,90) 29 (90,68) 78 (93,68) 76 (82,71)
BC5DR-D 71 (72,73) 39 (55,30) 41 (48,36) 45 (51,40)

NCBI 66 (66,67) 29 (47,21) 27 (52,18) 29 (41,22)
BC2GM 81 (77,84) 66 (78,58) 68 (75,62) 70 (69,72)
JNLPBA 74 (84,67) 61 (80,49) 63 (72,57) 49 (39,64)

Table 7: Performance of BioGPT fine-tuned separately
on each dataset. Overall high F1 is bolded (precision
and recall are underlined), and highest non-control score
is bolded (underlined for precision and recall) if distinct.
Values are 100x F1 (Recall, Precision).

6 Discussion

Our experiments show promise that automatically
labeled data by LLMs could be practically used as
a replacement or supplement to human-annotated
dataset. Our preliminary results demonstrate the
non-trivial ability for GPT-3.5 to, provided unla-
beled data, match human BioNER labels and pro-
duce a high-quality dataset for BPLM fine-tuning.

Because it will always be costly and difficult
to use human annotators for biomedical topics,
our promising results (despite the limitations in
our study) suggest deeper study into LLM-labeled
datasets for BioNER (and other biomedical NLP
tasks) could be incredibly fruitful for the field.

6.1 Cost Analysis

The cost of calling the API for the GPT-3.5-turbo-
1106 model is 0.1¢ per 1K input tokens and 0.2¢
per 1K output tokens, as seen here. Our costs
scale linearly with the size of the dataset; how-
ever, as the prompts increase in size, the average
number of trials needed to generate proper labels
increased (i.e. when moving from zero-shot to
few-shot prompting). Intuitively, few-shot prompt
labels should have cost more than zero-shot labels,
however, there was no clear linear relationship due
to the following two conflicting factors: LLMs pro-
vide better labels more consistently when provided

few-shot prompting but our servers crashed more
often because larger context required more server
bandwidth, and LLMs needed more trials to output
proper labels during zero-shot prompting and thus
more API calls were used.

Avg # Input Tokens per Call 240
Avg # Output Tokens per Call 305

Avg Call Cost 9.5¢
Avg Cost per BLURB dataset $84.73

Table 8: Breaking down the average costs of labeling
BLURB datasets.

Our costs of labeling the datasets do not align
with the prices provided by OpenAI, because our
code for generating labels gives GPT a few trials
to output proper BioNER labels, to mitigate the
number of errors and hallucinations in our final la-
bel outputs. This, in addition to having our servers
repeatedly crash and restart the API calls, signifi-
cantly drove up costs.

In spite of these confounding factors, the cost
of outsourcing human labor and third-party data
labeling services still far exceeds the cost of using
LLMs for label generation. High-quality data la-
beling services for NER tasks average 70¢ / unit of
text, the equivalent of 66 tokens, as seen here. By
comparison, our costs average 2.6¢ / unit of text,
which is nearly 30x cheapter than the status quo.

6.2 Directions for Future Research
Due to limitations in time and financial resources,
there were many directions we hoped to explore
further, which we believe could bolster the strength
of our results. The following are a few directions
we plan to experiment with next.

1. Fine-tuning GPT-3.5-Turbo: OpenAI re-
cently released the option to instruction fine-
tune GPT models on pre-established prompts
and responses. This involves formatting our
training examples as JSON user prompts and
model responses and fine tuning GPT-3.5-
turbo on 50-100 examples before deployment.
This allows for a way to provide multiple train-
ing examples without over populating each
prompt. Given we have seen that additional
training examples can assist in the labeling
process, but longer prompts can also nega-
tively affect results, we suspect this solution
would yield very strong results. The bottle-
neck is that the instruction fine-tuning process

https://openai.com/pricing
https://cloud.google.com/ai-platform/data-labeling/pricing


and deployment costs of fine-tuned models is
very expensive compared to using the base-
line GPT-3.5-turbo model. We were limited in
our financial resources to experiment with this
option, but have already written the scripts to
perform these experiments, which we hope to
perform once we receive further funding.

2. Further Prompt Engineering: Our experi-
ments regarding optimal prompt instructions
and output format were limited to only a few
training examples, given we did not have the
resources to generate multiple labeled datasets
with different prompting techniques. How-
ever, at a larger scale other techniques could
have yielded better results, and we hope to
experiment with more prompt designs going
forward.

3. More Intelligent Dataset Chunking: Our
method of splitting biomedical texts into
smaller chunks to send to GPT-3.5-turbo in-
volved trivially splitting the text into chunks of
approximately 300 tokens separated by end of
sentence tokens. Using periods as end of sen-
tence tokens negatively impacted accuracy, be-
cause we did not consider that periods would
also split decimal numbers. Given the sim-
plicity of this method, we likely lost a lot of
context in our chunks. Given context is very
crucial for effective NER labeling in any do-
main, we hope to see that if more context
sensitive chunking techniques could improve
the quality of our labeling results.

Research Impact

Our research on automating BioNER data label-
ing using LLMs demonstrates that there is great
potential for developing systems that will rapidly
increase the quantity of biomedical NLP datasets.
This is particularly important in light of the ever-
growing corpus of unlabeled medical literature.
While our research focused on Named Entity
Recognition in the biomedical sphere, it may easily
be extrapolated to other NLP tasks (i.e. classifica-
tion, summarization, question/answering), as well
as other domains (i.e. legal and financial domains)
with a growing wealth of data that is ripe for analy-
sis.

The introduction of synthetic NLP data labels
will likely have complex downstream effects on
tasks that these datasets are used for in biology

research, including: medical record analysis, drug
discovery and development, sentiment analysis in
patient feedback, and more. However, the rise of
LLM-generated datasets introduces the following
risks:

1. Automation bias: over-trusting models to au-
tomate away dataset labeling work. Lower
quality data: We have not yet found a method
for determining if the labeling performance
of ML models will ever match or exceed the
ability of humans to label data. If they cannot
at least match the accuracy of expert human
annotations, then we risk lowering the overall
accuracy and quality of biomedical datasets.
This is especially important to take into ac-
count, because many biomedical datasets may
have direct impacts on health outcomes.

2. Biased synthetic data: LLMs are pre-trained
on text corpuses that heavily involve certain
demographics and exclude others. Before au-
tomating away data-labeling, it’s important
to develop a system that can check for biases
inherent in LLM-generated labels.

3. Skewing biomedical research towards
English-speaking nations: Because most
LLMs, as of the present, are primarily pre-
trained on English text corpuses, most of the
synthetic data labels will also be for English
biomedical texts. This may incentivize more
NLP research in healthcare texts only in North
America and English-speaking nations, and di-
rect resources away from biomedical research
in other regions.

4. Generation of synthetic datasets with mali-
cious intent: Until we develop a robust detec-
tion system which will be able to distinguish
between LLM-generated labels and human-
generated labels, we must entrust those who
are developing these datasets to manually note
down which labels are which. If datasets
are being auto-labeled with malintent and
not caught, there may be rippling negative
repercussions in the field of biomedical re-
search, which directly impacts patient health
outcomes.

For these reasons, we encourage further research
to understand the biases and limitations of our pro-
posed LLM data-labeling system. We suggest that
researchers investigate the following questions:



1. Will synthetic dataset labels ever approach or
exceed the quality of human-generated dataset
labels?

2. How can we develop safe and robust detection
systems to distinguish between synthetic and
human labels?

3. How may we develop pipelines and methods
for to debias LLM-generated data labels?

4. How much money and time will be saved via
the automation of data labeling?

5. If data cannot be entirely auto-labeled by
LLMs, how can we develop a partial auto-
mated, partial human-in-the-loop system that
is more efficient than the status quo?
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A Appendix

A.1 Automatic BioNER Labeling Pipeline

The following is a more in depth overview of the entire automatic labeling pipeline starting from the
unlabeled BioMed corpus all the way to the fully labeled BioMed Corpus.

Figure 6: Complete overview of autmated BioNER data labeling pipeline

A.2 Example Prompts

The following are specific examples of zero-, one- and few-shot prompts used in our automatic label
generation process. These prompts are taken from the label generation algorithm for BC5CDR-chem.

1. Zero-Shot Prompt:

Given a biomedical text, perform Named Entity Recognition analysis on this
text, focusing on identifying ONLY CHEMICAL ENTITIES. Individual tokens are
separated by white space and must be given exactly one label: ‘B’, ‘I’, or ‘O’,
according to the BIO labeling schema. Output a JSON object with key equal to
token concatenated with ’_’+(index of token) and value equal to label, where
(index of token) starts from 0 for the first token, 1 for the second token, and
so on.

Text: 22 - oxacalcitriol suppresses secondary hyperparathyroidism without

inducing low bone turnover in dogs with renal failure . BACKGROUND : Calcitriol

therapy suppresses serum levels of parathyroid hormone ( PTH ) in patients with

renal failure but has several drawbacks , including hypercalcemia and / or

marked suppression of bone turnover , which may lead to adynamic bone disease

.



2. One-Shot Prompt:

Given a biomedical text, perform Named Entity Recognition analysis on this
text, focusing on identifying ONLY CHEMICAL ENTITIES. Individual tokens are
separated by white space and must be given exactly one label: ‘B’, ‘I’, or ‘O’,
according to the BIO labeling schema. Output a JSON object with key equal to
token concatenated with ’_’+(index of token) and value equal to label, where
(index of token) starts from 0 for the first token, 1 for the second token, and
so on. Here is an example of a successful response label for a biomedical text:

Example Text 1: The effects of quinine and 4 - aminopyridine on conditioned
place preference and changes in motor activity induced by morphine in rats . 1
. The effects of two unselective potassium ( K ( + ) - ) channel blockers ,
quinine ( 12 . 5 , 25 and 50 mg / kg ) and 4 - aminopyridine ( 1 and 2 mg /
kg ) , on conditioned place preference and biphasic changes in motor activity
induced by morphine ( 10 mg / kg ) were tested in Wistar rats .

Example Response 1:{’The_0’: ’O’, ’effects_1’: ’O’, ’of_2’: ’O’, ’quinine_3’:
’B’, ’and_4’: ’O’, ’4_5’: ’B’, ’-_6’: ’I’, ’aminopyridine_7’: ’I’, ’on_8’:
’O’, ’conditioned_9’: ’O’, ’place_10’: ’O’, ’preference_11’: ’O’, ’and_12’:
’O’, ’changes_13’: ’O’, ’in_14’: ’O’, ’motor_15’: ’O’, ’activity_16’: ’O’,
’induced_17’: ’O’, ’by_18’: ’O’, ’morphine_19’: ’B’, ’in_20’: ’O’, ’rats_21’:
’O’, ’._22’: ’O’, ’1_23’: ’O’, ’._24’: ’O’, ’The_25’: ’O’, ’effects_26’:
’O’, ’of_27’: ’O’, ’two_28’: ’O’, ’unselective_29’: ’O’, ’potassium_30’:
’B’, ’(_31’: ’O’, ’K_32’: ’B’, ’(_33’: ’O’, ’+_34’: ’O’, ’)_35’: ’O’,
’-_36’: ’O’, ’)_37’: ’O’, ’channel_38’: ’O’, ’blockers_39’: ’O’, ’,_40’:
’O’, ’quinine_41’: ’B’, ’(_42’: ’O’, ’12_43’: ’O’, ’._44’: ’O’, ’5_45’:
’O’, ’,_46’: ’O’, ’25_47’: ’O’, ’and_48’: ’O’, ’50_49’: ’O’, ’mg_50’: ’O’,
’/_51’: ’O’, ’kg_52’: ’O’, ’)_53’: ’O’, ’and_54’: ’O’, ’4_55’: ’B’, ’-_56’:
’I’, ’aminopyridine_57’: ’I’, ’(_58’: ’O’, ’1_59’: ’O’, ’and_60’: ’O’,
’2_61’: ’O’, ’mg_62’: ’O’, ’/_63’: ’O’, ’kg_64’: ’O’, ’)_65’: ’O’, ’,_66’:
’O’, ’on_67’: ’O’, ’conditioned_68’: ’O’, ’place_69’: ’O’, ’preference_70’:
’O’, ’and_71’: ’O’, ’biphasic_72’: ’O’, ’changes_73’: ’O’, ’in_74’: ’O’,
’motor_75’: ’O’, ’activity_76’: ’O’, ’induced_77’: ’O’, ’by_78’: ’O’,
’morphine_79’: ’B’, ’(_80’: ’O’, ’10_81’: ’O’, ’mg_82’: ’O’, ’/_83’: ’O’,
’kg_84’: ’O’, ’)_85’: ’O’, ’were_86’: ’O’, ’tested_87’: ’O’, ’in_88’: ’O’,
’Wistar_89’: ’O’, ’rats_90’: ’O’, ’._91’: ’O’}

Now, label the following text: 22 - oxacalcitriol suppresses secondary
hyperparathyroidism without inducing low bone turnover in dogs with renal
failure . BACKGROUND : Calcitriol therapy suppresses serum levels of
parathyroid hormone ( PTH ) in patients with renal failure but has several
drawbacks , including hypercalcemia and / or marked suppression of bone turnover
, which may lead to adynamic bone disease .

3. Few-Shot Prompt:

Given a biomedical text, perform Named Entity Recognition analysis on this
text, focusing on identifying ONLY CHEMICAL ENTITIES. Individual tokens are
separated by white space and must be given exactly one label: ‘B’, ‘I’, or ‘O’,
according to the BIO labeling schema. Output a JSON object with key equal to
token concatenated with ’_’+(index of token) and value equal to label, where
(index of token) starts from 0 for the first token, 1 for the second token, and
so on. Here are a few examples of successful response labels for biomedical
texts:

Example Text 1: The effects of quinine and 4 - aminopyridine on conditioned
place preference and changes in motor activity induced by morphine in rats . 1
. The effects of two unselective potassium ( K ( + ) - ) channel blockers ,
quinine ( 12 . 5 , 25 and 50 mg / kg ) and 4 - aminopyridine ( 1 and 2 mg /
kg ) , on conditioned place preference and biphasic changes in motor activity
induced by morphine ( 10 mg / kg ) were tested in Wistar rats .

Example Response 1:{’The_0’: ’O’, ’effects_1’: ’O’, ’of_2’: ’O’, ’quinine_3’:
’B’, ’and_4’: ’O’, ’4_5’: ’B’, ’-_6’: ’I’, ’aminopyridine_7’: ’I’, ’on_8’:
’O’, ’conditioned_9’: ’O’, ’place_10’: ’O’, ’preference_11’: ’O’, ’and_12’:
’O’, ’changes_13’: ’O’, ’in_14’: ’O’, ’motor_15’: ’O’, ’activity_16’: ’O’,
’induced_17’: ’O’, ’by_18’: ’O’, ’morphine_19’: ’B’, ’in_20’: ’O’, ’rats_21’:
’O’, ’._22’: ’O’, ’1_23’: ’O’, ’._24’: ’O’, ’The_25’: ’O’, ’effects_26’:
’O’, ’of_27’: ’O’, ’two_28’: ’O’, ’unselective_29’: ’O’, ’potassium_30’:
’B’, ’(_31’: ’O’, ’K_32’: ’B’, ’(_33’: ’O’, ’+_34’: ’O’, ’)_35’: ’O’,



’-_36’: ’O’, ’)_37’: ’O’, ’channel_38’: ’O’, ’blockers_39’: ’O’, ’,_40’:
’O’, ’quinine_41’: ’B’, ’(_42’: ’O’, ’12_43’: ’O’, ’._44’: ’O’, ’5_45’:
’O’, ’,_46’: ’O’, ’25_47’: ’O’, ’and_48’: ’O’, ’50_49’: ’O’, ’mg_50’: ’O’,
’/_51’: ’O’, ’kg_52’: ’O’, ’)_53’: ’O’, ’and_54’: ’O’, ’4_55’: ’B’, ’-_56’:
’I’, ’aminopyridine_57’: ’I’, ’(_58’: ’O’, ’1_59’: ’O’, ’and_60’: ’O’,
’2_61’: ’O’, ’mg_62’: ’O’, ’/_63’: ’O’, ’kg_64’: ’O’, ’)_65’: ’O’, ’,_66’:
’O’, ’on_67’: ’O’, ’conditioned_68’: ’O’, ’place_69’: ’O’, ’preference_70’:
’O’, ’and_71’: ’O’, ’biphasic_72’: ’O’, ’changes_73’: ’O’, ’in_74’: ’O’,
’motor_75’: ’O’, ’activity_76’: ’O’, ’induced_77’: ’O’, ’by_78’: ’O’,
’morphine_79’: ’B’, ’(_80’: ’O’, ’10_81’: ’O’, ’mg_82’: ’O’, ’/_83’: ’O’,
’kg_84’: ’O’, ’)_85’: ’O’, ’were_86’: ’O’, ’tested_87’: ’O’, ’in_88’: ’O’,
’Wistar_89’: ’O’, ’rats_90’: ’O’, ’._91’: ’O’}

Example Text 2: OBJECTIVES : To investigate the effects of subchronic L - NOARG
treatment in haloperidol - induced catalepsy and the number of NOS neurons in
areas related to motor control . METHODS : Male albino Swiss mice were treated
sub - chronically ( twice a day for 4 days ) with L - NOARG ( 40 mg / kg i . p
. ) or haloperidol ( 1 mg / kg i .

Example Response 2: {’OBJECTIVES_0’: ’O’, ’:_1’: ’O’, ’To_2’: ’O’,
’investigate_3’: ’O’, ’the_4’: ’O’, ’effects_5’: ’O’, ’of_6’: ’O’,
’subchronic_7’: ’O’, ’L_8’: ’B’, ’-_9’: ’I’, ’NOARG_10’: ’I’, ’treatment_11’:
’O’, ’in_12’: ’O’, ’haloperidol_13’: ’B’, ’-_14’: ’O’, ’induced_15’: ’O’,
’catalepsy_16’: ’O’, ’and_17’: ’O’, ’the_18’: ’O’, ’number_19’: ’O’,
’of_20’: ’O’, ’NOS_21’: ’O’, ’neurons_22’: ’O’, ’in_23’: ’O’, ’areas_24’:
’O’, ’related_25’: ’O’, ’to_26’: ’O’, ’motor_27’: ’O’, ’control_28’: ’O’,
’._29’: ’O’, ’METHODS_30’: ’O’, ’:_31’: ’O’, ’Male_32’: ’O’, ’albino_33’:
’O’, ’Swiss_34’: ’O’, ’mice_35’: ’O’, ’were_36’: ’O’, ’treated_37’: ’O’,
’sub_38’: ’O’, ’-_39’: ’O’, ’chronically_40’: ’O’, ’(_41’: ’O’, ’twice_42’:
’O’, ’a_43’: ’O’, ’day_44’: ’O’, ’for_45’: ’O’, ’4_46’: ’O’, ’days_47’: ’O’,
’)_48’: ’O’, ’with_49’: ’O’, ’L_50’: ’B’, ’-_51’: ’I’, ’NOARG_52’: ’I’,
’(_53’: ’O’, ’40_54’: ’O’, ’mg_55’: ’O’, ’/_56’: ’O’, ’kg_57’: ’O’, ’i_58’:
’O’, ’._59’: ’O’, ’p_60’: ’O’, ’._61’: ’O’, ’)_62’: ’O’, ’or_63’: ’O’,
’haloperidol_64’: ’B’, ’(_65’: ’O’, ’1_66’: ’O’, ’mg_67’: ’O’, ’/_68’: ’O’,
’kg_69’: ’O’, ’i_70’: ’O’, ’._71’: ’O’}

Example Text 3: Recently , fenfluramine appetite suppressants became widely
used in the United States but were withdrawn in September 1997 because of
concerns over adverse effects . MATERIALS AND METHODS : We conducted a
prospective surveillance study on patients diagnosed with pulmonary hypertension
at 12 large referral centers in North America .

Example Response 3: {’Recently_0’: ’O’, ’,_1’: ’O’, ’fenfluramine_2’: ’B’,
’appetite_3’: ’O’, ’suppressants_4’: ’O’, ’became_5’: ’O’, ’widely_6’: ’O’,
’used_7’: ’O’, ’in_8’: ’O’, ’the_9’: ’O’, ’United_10’: ’O’, ’States_11’:
’O’, ’but_12’: ’O’, ’were_13’: ’O’, ’withdrawn_14’: ’O’, ’in_15’: ’O’,
’September_16’: ’O’, ’1997_17’: ’O’, ’because_18’: ’O’, ’of_19’: ’O’,
’concerns_20’: ’O’, ’over_21’: ’O’, ’adverse_22’: ’O’, ’effects_23’: ’O’,
’._24’: ’O’, ’MATERIALS_25’: ’O’, ’AND_26’: ’O’, ’METHODS_27’: ’O’, ’:_28’:
’O’, ’We_29’: ’O’, ’conducted_30’: ’O’, ’a_31’: ’O’, ’prospective_32’: ’O’,
’surveillance_33’: ’O’, ’study_34’: ’O’, ’on_35’: ’O’, ’patients_36’: ’O’,
’diagnosed_37’: ’O’, ’with_38’: ’O’, ’pulmonary_39’: ’O’, ’hypertension_40’:
’O’, ’at_41’: ’O’, ’12_42’: ’O’, ’large_43’: ’O’, ’referral_44’: ’O’,
’centers_45’: ’O’, ’in_46’: ’O’, ’North_47’: ’O’, ’America_48’: ’O’, ’._49’:
’O’}

Now, label the following text: 22 - oxacalcitriol suppresses secondary
hyperparathyroidism without inducing low bone turnover in dogs with renal
failure . BACKGROUND : Calcitriol therapy suppresses serum levels of
parathyroid hormone ( PTH ) in patients with renal failure but has several
drawbacks , including hypercalcemia and / or marked suppression of bone turnover
, which may lead to adynamic bone disease .



A.3 Prompt Engineering Consideration Factors

Pros Cons
Prompting with Detailed Input
Context

GPT has a more accurate un-
derstanding of the BIO labeling
schema.

Having a input prompt means
there’s less tokens allocated to-
wards the model’s output.

Prompting with Low Tempera-
ture

GPT is less likely to output ad-
ditional information beyond a
JSON string.

N/A

Prompting for a JSON output GPT- 3.5 is very consistent at out-
putting syntatically proper JSON
objects.

Each JSON object must have
unique keys. Since we ask
GPT to use the words within
the prompt as keys, and words
are often duplicated, we attach a
unique index to the end of each
word.

Table 9: Considerations when Developing a Prompt for generating BioNER Dataset Annotations

A.4 Source Code and Model Repository
GitHub Repository: https://github.com/jennyxycai/llm-annotations. This con-
tains all the code for preprocessing data, generating GPT labels, and performing intrinsic and extrinsic
evaluation.

HuggingFace Repository: https://huggingface.co/68611-llm-annotation-group.
This contains all of the fine-tuned BPLM models we generated during the extrinsic evaluation process.

https://github.com/jennyxycai/llm-annotations
https://huggingface.co/68611-llm-annotation-group

